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1. Introduction 

Recent developments in VNIR/SWIR1 hyperspectral and TIR multispectral remote sensing have 
greatly increased the potential for accurate geological mapping.  Hyperspectral instruments, often referred 
as imaging spectrometers, acquire image data simultaneously in many narrow, contiguous channels 
(Goetz et al., 1985), generally spanning the reflected solar portion of the electromagnetic spectrum (0.4–
2.5 µm) (Vane et al., 1993).  The spectral bandwidths of hyperspectral image bands are generally less 
than 25 nm, in order to facilitate the identification of diagnostic absorption features of minerals (Clark, 
1999).  Hyperspectral data have a significant advantage over conventional multispectral data, such as 
Landsat Thematic Mapper imagery, in that with hyperspectral data, minerals can be identified by 
comparisons with generic library spectra (Clark et al., 2003).  With hyperspectral data, it is therefore 
theoretically possible to map the surface mineralogy of an area without acquiring any ground data from 
the particular site. 

In contrast to the many bands of hyperspectral instruments, TIR multispectral sensors measure 
surface radiance in a small number of broad bands.  TIR imagery provides important information 
regarding temperature, thermal inertia, and emissivity of ground materials (Price, 1979; Kahle, 1987; 
Warner and Chen, 2001).  Surface emissivity is potentially the most useful thermal property because it is 
an inherent characteristic of an object and is independent of illumination intensity and local temperature.  
Emissivity is defined as the ratio of the emitted radiation to that of a blackbody at the same temperature 
(Hook et al., 1992).  Emissivity can be used to identify individual minerals and has been related to silica 
content of rocks (Lyon, 1972), thus offering the possibility of discriminating the silicate materials that 
make up much of the land surface.   

Minerals tend to have characteristic spectral reflectance and associated emissivity features, which 
may potentially be used for remote identification (Clark, 1999; Hook et al., 1994).  The characteristic 
spectral features are produced by the interaction of electromagnetic energy with the atoms and molecules 
of the minerals, which cause electronic transitions and vibrational processes.  Electronic transitions tend 
to dominate mineral spectra in the visible and NIR, but are also found across the SWIR region (Clark, 
1999; Goetz, 1989).  Vibrational processes, dominating in SWIR and TIR region, produce particularly 
diagnostic absorption features in the spectra of silicate, hydroxyl, oxide, carbonate and water-bearing 
minerals (Vincent and Thomson, 1971; Hunt and Salisbury, 1974; Hunt, 1980; Hook et al., 1994; Clark, 
1999).   

                                                 
1 An unfortunate inconsistency has developed in the terms used by the remote sensing community for regions of the 
electromagnetic spectrum (Clark, 1999).  In this study, the wavelength regions are defined as follows:  visible: 0.4–
0.7 µm, near-infrared (NIR): 0.7–1.1 µm, visible and near-infrared (VNIR): 0.4–1.1 µm, short-wavelength 
infrared (SWIR): 1.1–2.5 µm, mid-infrared (MIR): 3–5 µm, and thermal infrared (TIR): 8–14 µm (Goetz, 
1989; Hook et al., 2001).   
 



 

The distinctive spectral features of silicates, as well as other important spectral features of most 
non-silicate minerals, including the carbonates, sulfates, phosphates, oxides, and hydroxide mineral 
groups, demonstrate the tremendous potential of the TIR region for geological mapping.  Combining 
information from TIR spectral emissivity with measurement of spectral reflectance in the 0.4–2.5 µm 
region, which is particularly good for discriminating clays, iron oxides, and iron hydroxides (Clark, 
1999), should provide a more comprehensive overview of rock compositional information than using data 
from only one of the two regions (Rowan, 1998).  

In summary, the combination of VNIR/SWIR hyperspectral data and TIR multispectral data 
appears to have great promise for geological studies because of the complementary nature of information 
from the thermal and shorter wavelengths (Hook et al., 1999).  Typically, iron oxide, hydroxyl, and 
carbonate minerals have absorption features in the visible or SWIR region, while the Si-O bonding of 
silicate minerals exhibit absorption features in TIR region.  Nevertheless, combining VNIR/SWIR and 
TIR data has received very little prior attention, with the exception of Abrams and Hook (1991), who 
separately analyzed VNIR/SWIR hyperspectral and TIR multispectral data for lithological analysis at 
Cuprite, Nevada.  

That no previous research has simultaneously analyzed VNIR/SWIR hyperspectral and TIR 
multispectral data is probably due to the fact that data from these spectral regions are rarely acquired 
simultaneously, and that coregistration of aerial imagery from different sources can be very challenging.  
However, modern aircraft-acquired data often include navigation information that can be used to remove 
non-systematic spatial distortions. Furthermore, in the future, with the increased availability of satellite 
data, which tends to have simpler geometry than aerial imagery, coregistration of different image products 
may become more routine.  In fact, space-borne hyperspectral data is already being collected by the 
Hyperion instrument, and space-borne multispectral TIR data by the Advanced Spaceborne Thermal 
Emission and Reflection Radiometer (ASTER).  Integrating imagery from different sensors may not even 
be necessary in the future; for example there are plans to fly an airborne hyperspectral sensor in 2005, 
Airborne Reflective Emissive Spectrometer (ARES), which has 160 image bands in the visible, NIR, 
SWIR, and TIR wavelength regions (Mueller et al., 2003). 

This study investigated the potential value of integration of VNIR/SWIR hyperspectral analysis 
with TIR multispectral analysis, with the anticipation that such an approach should provide improved 
geological mapping.  To test this hypothesis, simulated data were used to test the improvement in 
classification accuracy when the combination of VNIR/SWIR hyperspectral and TIR multispectral data is 
used, compared to an analysis that uses only the VNIR/SWIR or TIR regions on their own.  In addition, 
the simulated data were used to evaluate the performance of automatic information extraction algorithms, 
including the conventional classification algorithms of minimum distance and maximum likelihood 
classification (Richards, 1993), as well as the hyperspectral analysis techniques of spectral angle mapper 
(Kruse et al., 1993a), binary encoding (Goetz et al., 1985), and spectral feature fitting (Crowley et al., 
1989; Clark et al., 1990).  

Simulated data have been demonstrated to be useful in developing general theories about how 
information is represented in images and spectra (Strahler et al., 1986).  For example, simulated data have 
been used in many studies of image spatial properties (e.g., Woodcock et al., 1988, Jupp et al., 1989, 
Collins and Woodcock, 1999, Warner, 1999, Ferro and Warner, 2002), and spectral properties (e.g., 
Verhoef, 1984, Li et al., 1999, Pandya et al., 2000). 

Simulated data were chosen for this study because with simulated data it is possible to evaluate 
accuracy with complete confidence in the reference data set.  In contrast, ground checking of minerals for 
real hyperspectral analyses is challenging, especially when the minerals are fine grained.  Although 
minerals can be identified through laboratory techniques, it is hard to generalize from small laboratory 
samples to 20 meter pixels, and especially difficult to estimate the proportions of minerals present in fine 
mixtures.  Additional uncertainty is added by varying desert varnish, vegetation, weathering, and 
deposition of transported material in each pixel.  Thus, in summary, it is close to impossible to produce a 
“truth map” for geological hyperspectral remote sensing; and indeed, we know of no previous quantitative 
assessment of accuracy of geological hyperspectral remote sensing classification.   



 

A second reason for using simulated data is that this approach allows us to vary image properties 
in a controlled fashion, and thus potentially develop an understanding of the reasons behind the results we 
observe.  We are also able to study what aspects of the scene model most affect the different methods, a 
key to developing improvements to the different methods.  For example, if illumination variation were 
found to be a major source of error, then we would infer that illumination normalization methods should 
be researched further. 

The third reason for using simulated data is that simulation provides a simplified, but reasonable, 
representation of real data as long as the major processes that result in a real image are included in the 
analysis.  Simulated data are typically much simpler than reality.  This does not necessarily negate the 
value of simulated data; indeed, the simplification can be an advantage, as discussed above.   

In a future paper, the classification methods tested in this paper, as well as a specially developed 
expert system, will be applied to real data, comprising AVIRIS (Airborne Visible/Infrared Imaging 
Spectrometer) and MASTER (MODIS/ASTER Airborne Simulator) imagery of Cuprite, Nevada.  

 
2. Methods 
2.1 Classification algorithms 

Image classification methods can be divided into two groups:  empirical classification 
algorithms that use summary class statistics based on groups of image pixels, and spectral analysis 
techniques that match image spectra to previously acquired field or laboratory spectra, known as spectral 
libraries.  With hyperspectral data, empirical classification approaches that rely on statistical measures 
tend to require excessive numbers of training samples for training the classifier (Landgrebe, 2000).  The 
spectral library approach is attractive for hyperspectral image analysis because rocks and minerals tend to 
have distinctive and consistent spectral absorption features, as discussed above.  Furthermore, the 
potential to identify surface materials without any local field data is clearly very attractive.  

The two most common empirical classification methods used for geological mapping are 
minimum distance and maximum likelihood classification.  Numerous additional spectral analysis 
methods have been developed for geological mapping (Mustard and Sunshine, 1999), including binary 
encoding, spectral feature fitting, and the spectral angle mapper.  These three spectral analysis methods 
will be described briefly below. 

Binary encoding (Goetz et al., 1985) is a fast spectral matching algorithm that compares 
summary measures of the spectral shapes of an unknown pixel and the reference spectra.  The unknown 
pixel spectrum of n bands is represented by an n bit vector, with each bit set to 1 or 0 respectively, 
depending on whether the value of the spectrum for that band is above or equal to, or below the pixel 
mean.   

Spectral feature fitting (SFF) (Crowley et al., 1989; Clark et al., 1990) is based on a comparison 
of the absorption features in the image and reference spectra.  The continuum, defined as a convex hull fit 
over the top of each spectrum utilizing straight line-segments to connect local spectrum maxima (Clark et 
al., 2003; Kruse et al., 1993b), is removed by dividing the convex hull into the original spectrum.  The 
continuum-removed pixel spectrum and reference spectra are compared at each absorption band using a 
least-square fit.  The root mean square error indicates the relative goodness-of-fit of the two spectra. 

Spectral angle mapper (SAM) (Kruse et al., 1993a) builds on the hyperspherical direction 
cosine method (Pouch and Campagna, 1990) by calculating the similarity between pixel spectra and 
reference spectra in terms of the angle between two n-dimensional vectors, where n is the number of 
bands of hyperspectral data.  

 
2.2 Simulated data 

The creation of the simulated data was carried out using the Interactive Data Language (IDL) 
(Research Systems, 2000).  The spectra of 16 common minerals, rock types, and alteration types (Table 1) 
were chosen for this study because they represent the dominant lithological units and alteration types 



 

typical of hydrothermal alteration areas such as Cuprite, Nevada (Abrams and Ashley, 1980).  The library 
spectra were resampled to match the approximate spectral bandwidth and signal-to-noise of the AVIRIS 
and MASTER instruments.  A brief introduction to the AVIRIS and MASTER instruments is given below 
(see also Table 2), followed by a more detailed discussion of the simulated data characteristics. 

 
Table 1. Minerals, rock types, and alteration types used to create the simulated data 

Type Name 

Minerals Quartz, calcite, hematite, goethite, alunite, kaolinite, montmorillonite, 
muscovite, gypsum. 

Unaltered rocks Basalt, limestone, sandstone, siltstone 

Altered rocks Silicified rocks, opalized rocks, and argillized rocks. 
 
The MASTER sensor was developed to support research prior to the launch of the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Moderate Resolution 
Imaging Spectroradiometer (MODIS) (Hook et al., 2001).  MASTER has a total of 50 bands from 0.4–
13 µm, including 10 TIR bands.  In this study, simulated multispectral thermal data are based only on the 
10 MASTER TIR bands (7.6–13 µm).  AVIRIS, flown by NASA since 1987 (Green et al., 1998), 
acquires data in 224 narrow, contiguous spectral bands across the reflected solar energy region (0.4–
2.5 µm), each band approximately 10 nm at full width, half maximum (FWHM). 

 
Table 2. Summary characteristics of the MASTER and AVIRIS instruments 

Sensor 
Characteristic 

MASTER AVIRIS 

Wavelength range 0.4–13 µm 0.4–2.5 µm 

Number of spectral bands 50 224 

Channel width Varies, 40 to 650 nm 10 nm 

Instantaneous field of view 2.5 mrad 1 mrad 

Total field of view 85.92º 33º 

Number of pixels 716 614 

Platform B200, ER-2, DC-8 ER-2, Twin Otter 

Digitization 16-bit 12-bit 
 
The simulated data were derived from the public domain spectral library included with ENVI 

(Research Systems, 2002): the Johns Hopkins University library of spectra of materials from 0.4 to 14 µm 
(Salisbury et al., 1991; Research Systems, 2002).  Emissivities of minerals or rocks are calculated from 
Kirchoff’s law, which states that spectral emissivity equals 1 minus the spectral reflectance.  

To simplify the simulated data construction, the contribution of the atmosphere was not modeled 
directly.  Nevertheless, the effects of the atmosphere were included indirectly, because noise was added 
on a band-by-band basis, equivalent to that found in typical AVIRIS and MASTER scenes that include 
atmospheric effects.  In addition, the simulated AVIRIS bands in the atmospheric water absorption 
regions near 1.4, 1.9, and 2.5 µm were deleted, leaving a total of 188 out of the 224 bands for the 
analysis.  Multiplying the spectral radiances with the inverse of the spectral signal-to-noise ratios for 



 

AVIRIS and MASTER simulated the noise of the sensor system.  The signal-to-noise ratio of AVIRIS 
was taken from Green et al. (1998), who measured in the laboratory the average and standard deviation of 
3000 dark signal spectra, and 3000 illuminated radiometric calibration target spectra.  The signal-to-noise 
ratio of MASTER was estimated using the ratio of the mean and standard deviation of a 7 by 7 moving 
window of MASTER imagery of Lake Mead, Nevada.  An additional 0.015 variation in emissivity 
(Gillespie et al., 1998) was added to simulate the uncertainty due to the indeterminacy of the emissivity 
calculation from radiance data. 

The library spectra were also combined in various proportions to simulate real pixels, which 
generally comprise mixed proportions of different surface materials: 
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Where 

Lλ  = reflectance or emissivity at wavelength λ corresponding to a specific AVIRIS or  
MASTER band; 

 
ai    = the proportion of the endmember i in the pixel;  

Rλi = the reflectance or emissivity of endmember i at wavelength λ; 

ελ  = the error term resulting from all sources of noise at wavelength λ. 

Seven groups of simulated data with different levels of uncertainties were derived using equation 
1 (Table 3).  Each group includes three data sets designed to simulate AVIRIS data (188 bands between 
0.4–2.5 µm, after the exclusion of the water absorption bands), MASTER thermal data (10 bands between 
7.6–13 µm), and the combination of AVIRIS and MASTER multispectral thermal infrared data (a total of 
198 bands between 0.4–2.5 µm and 7.6–13 µm).  The simulated uncertainties include sensor system 
noise, mixing of vegetation and the other endmembers, and variation in solar illumination.  Solar 
illumination uncertainty was applied only to the simulated AVIRIS data, assuming that topographic 
effects in thermal data are mostly suppressed when the emissivity is calculated.  Solar illumination effects 
were simulated by varying the total radiance by 0 to 25 percent.  The first group of data is a theoretical 

Table 3. Simulated data with different levels of uncertainties* 

Simulated Noise  
Mixed pixels  

(proportion of cover type) Group 
System Solar 

Illumination 
Vegetation Additional 

mineral/rock 
1 X    
2 X X   
3 X  0–5%  
4 X  0–5% 0–10% 
5 X X 0–5% 0–10% 
6 X X 0–5% 0–20% 
7 X X 0–10% 0–30% 

*Empty boxes indicate uncertainties not included in the simulated data.



 

near-perfect data set, containing only reflectance or emissivity information and system noise of sensor 
instruments.  The uncertainties of the second group include the system noise and solar illumination 
effects; in the third group, a random percentage of vegetation, up to 5 percent, is added; the fourth group 
has a random proportion, up to 5 percent, vegetation, and up to10 percent of another mineral or rock 
endmember, randomly selected from the 16 library spectra; the fifth group is similar to the fourth, except 
it also includes variations in solar illumination; the sixth group has up to 5 percent vegetation and up to 20 
percent of another mineral or rock endmember, and the illumination effects; the seventh group has up to 
10 percent vegetation, up to 30 percent another endmember, and illumination effects.  

 
2.3 Analysis 

All classification and spectral analysis methods were carried out with ENVI image analysis 
software (Research System, 2002).  Binary encoding, SAM, and SFF were applied using endmember 
spectra derived from training data and also by comparing the image data directly with the spectral 
libraries.  SFF is normally used with data of more limited spectral regions, and therefore SFF was also 
tested using the simulated AVIRIS bands from just the SWIR region (1.96–2.44 µm). Considering that 
SFF’s focus on spectral absorption features makes the method inappropriate for use with minerals and 
rocks with spectrally flat curves, additional comparisons were made using only the nine minerals which 
exhibit absorption features in VNIR, SWIR, and TIR:  alunite, calcite, goethite, hematite, kaolinite, 
montmorillonite, muscovite, quartz, and gypsum. 

Data sets 5, 6 and 7 have comparatively high levels of uncertainty, and were found to produce 
notably low accuracies, especially for minimum distance and SAM classification.  Therefore, additional 
preprocessing was carried out to evaluate whether the effect of the uncertainty could be reduced for these 
methods using the minimum noise fraction (MNF) transformation (Green et al., 1988).  MNF was used to 
generate 13 MNF bands for each data set.  MNF consists of two cascaded principal component 
transformations, and is usually used to suppress noise and reduce the number of bands prior to 
classification.  The first transformation decorrelates and rescales the noise in the data, assuming the noise 
has unit variance and no band-to-band correlation.  The second step is a standard principal component 
transformation applied on the noise-free data.  The final transformed data includes two parts: one part 
associated with large eigenvalues representing most of the variance, and a second part with near-unity 
eigenvalues representing the noise-dominated data (Green et al., 1988).   

Overall accuracies were calculated, and used to evaluate the degree to which the combined data 
aids discrimination by contributing to increased separability of the entire group of spectral classes.  
ENVI’s confusion matrix procedure (Research Systems, 2002) was applied to all classified images to 
evaluate the performance of the classifications.  The same approximately 10,000 pixels used for training 
the classifiers were used for classification assessment.  In conventional accuracy assessment, different 
training and testing pixels are normally used.  However, in this case, with a large random sample, there 
would be little difference in the results if a new data set was used for testing.  
 
3. Results 
3.1. Evaluation of combining VNIR, SWIR, and TIR spectral regions  

The overall accuracies of classifications (Figure 1) were found to vary with the mapping methods 
and the data sets.  With the exception of maximum likelihood, SFF, and all methods using the first 
uncertainty level data set, most methods applied to simulated MASTER data have higher accuracies than 
when applied to combined data sets (Figure 1, upper right).  Although the simulated MASTER data has 
few bands, these bands have a higher signal-to-noise ratio than the simulated AVIRIS data due to 
MASTER’s broad bands and the lack of variation in illumination in the simulated TIR data. 

Figure 1 nevertheless provides evidence to support the hypothesis that the combination of 
AVIRIS and MASTER aids discrimination of minerals and rocks.  First, for maximum likelihood 
classification, the combined data set always has the highest overall accuracy of the three data sets.  The 



 

combined data set also produced the highest accuracy for minimum distance classification and SAM 
applied to MNF transformed data (Figure 2).  
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Figure 1. Comparison of the overall accuracies using five mapping methods on different noise level data 
sets of 16 mineral and rock classes.  Upper left: AVIRIS data sets. Upper right: MASTER data set. 
Bottom: Combined data set. 

 



 

M inim um  Distance Class ification

75

80

85

90

95

100

5 6 7

Uncertainty class

A
cc

ur
ac

y
Spectral Angle  M apper

75

80

85

90

95

100

5 6 7

Uncertainty clas s

A
cc

ur
ac

y

 
U n c e r t a in t y  c la s s

AVIRIS MASTER COMBINED

 
Figure 2. Overall classification accuracies of minimum distance classification and spectral angle mapping 
applied on MNF transformed data sets (Uncertainty levels 5, 6, and 7). 

 
When the classifications are examined in more detail, some of the individual minerals and rocks 

can be seen to show large improvement in classification accuracy when the AVIRIS data set was 
combined with the MASTER data set (Table 4).  For instance, basalt, calcite, and muscovite showed an 
improvement of almost 30 percent in either the producer’s accuracy or the user’s accuracy when SAM 
was applied to the combined data set.  However, some minerals, such as alunite, montmorillonite, and 
kaolinite, showed little improvement, or even a decrease in accuracy.  Most of the minerals that showed 
an improvement in classification accuracy with the combined data sets analyzed using SFF classification 
exhibit the characteristic absorption features in the thermal infrared wavelength region (Figure 3).  For 
example, quartz and muscovite, which have deep Si-O absorption features around 9 µm, showed a 
marked improvement in classification accuracy using the combined data set.  Likewise, goethite and 
hematite showed a higher classification accuracy with the combined data set because they have absorption 
features at 12.1 and 8.2 µm, respectively.  On the other hand, basalt and kaolinite have relatively flat TIR 
spectra (Figure 3), so combining AVIRIS and MASTER reduced their classification accuracies.  Calcite 
has only two relative weak absorption features in the 9 and 11 µm wavelength regions, which are diluted 
by mixing with other minerals or rocks.  Therefore, calcite did not show any improvement in 
classification accuracy within the combined data set.  Although alunite and gypsum are characterized by 
strong absorption features in the TIR, they are too close to be separated in the MASTER data, and 
therefore the combined data set did not enhance discrimination.  

When SFF was applied to the AVIRIS SWIR bands alone (1.96–2.44 µm), the overall accuracy 
decreased, although some minerals with distinctive absorption features, such as kaolinite (Figure 3), 
showed a 55 percent improvement in user accuracy.  However, some minerals with characteristic 
absorption features in the VNIR region, for instance, hematite and goethite (Figure 3), showed a large 
decrease in accuracy (e.g., 65 percent in user accuracy for hematite and 43 percent in producer accuracy 
for goethite).  Thus, as might be expected, SFF applied to a relatively narrow wavelength region only 
enhances identification of the specific minerals or rocks which exhibit distinctive absorption features in 
that wavelength region.  

 



 

Table 4.  Classification accuracies of minerals and rock on data set 4 using SAM and SFF 

Accuracy:  SAM Accuracy:  SFF 
AVIRIS COMBINED AVIRIS COMBINED Mineral or 

rock 
Prod.* User Prod. User Prod. User Prod. User 

Alunite 30.43 100.00 38.14 92.00 92.38 97.17 44.91 76.67 
Basalt 26.72 44.72 66.31 68.00 72.31 74.01 21.85 84.67 
Calcite 19.00 52.80 43.19 80.05 79.49 99.94 74.03 96.06 
Goethite 53.02 59.30 67.05 67.95 94.81 78.83 85.39 100.00 
Hematite 65.90 65.46 69.85 68.98 76.75 95.96 100.00 100.00 
Kaolinite 50.64 99.85 65.89 73.96 84.76 44.76 62.09 15.99 
Montm. 36.06 53.95 52.69 64.26 81.39 95.58 37.63 99.61 
Muscovite 26.19 11.76 61.12 21.93 43.36 62.99 44.43 100.00 
Quartz 52.95 16.30 55.40 30.72 68.61 87.00 91.14 100.00 
Gypsum 61.55 71.76 70.06 70.11 86.84 99.95 47.65 100.00 

*Producer’s accuracy of classification. 
 

3.2. Evaluation of classification algorithms 
The major uncertainties added to the data sets include variable vegetation coverage, solar 

illumination effects, and mixing of the other minerals (Table 3).  All the classification methods, with the 
exception of maximum likelihood classification applied to the simulated AVIRIS data sets, are generally 
very sensitive to the type and degree of uncertainty.  For the near-perfect data set of the simulated 
AVIRIS with only instrumental system noise, all methods achieved relatively high classification 
accuracies, with maximum likelihood classification, binary encoding, and SAM obtaining 100 percent 
accuracy (Figure 1).  When up to 5 percent mixing of vegetation is added to the data (Uncertainty Level 
3), only maximum likelihood classification still resulted in 100 percent accuracy; the accuracies using the 
other methods dropped rapidly.  This suggests that minimum distance classification, binary encoding, and 
SAM, are very sensitive to subpixel mixing.  Although the overall accuracy of SFF dropped 20 percent, it 
obtained the second highest accuracy dealing with mixing pixels.   

In terms of overall accuracy of the different methods, maximum likelihood classification is the 
best method for minerals and rocks classification using the simulated AVIRIS data (Figure 1, top left), 
followed by SFF and SAM; minimum distance classification and binary encoding have relative poor 
performance. Data sets 1 and 4 are similar to data sets 2 and 5, respectively, except that 2 and 5 have an 
additional uncertainty due to illumination effects.  The accuracy for all methods applied to AVIRIS data, 
with the notable exception of minimum distance classification, declines only slightly from data sets 1 to 2 
and from 4 to 5.  

The results of the combined data sets are slightly more complex (Figure 1, bottom). In terms of 
overall accuracy, maximum likelihood classification almost achieved 100 percent accuracy for all 
uncertainty level data sets, and SAM resulted in the second highest accuracy.  The accuracy of SFF 
method dropped to the third position.  Minimum distance classification and binary encoding resulted in 
the worst accuracies.  Curves of minimum distance and maximum likelihood classification follow the 
same trend as those from the AVIRIS data set, but the relative accuracies of the other methods differ 
greatly.  Whereas with the simulated AVIRIS data illumination effects had little influence, with the 
combined data set, accuracy declined markedly when illumination was included.  In fact, the illumination 
effects become the main factor reducing the classification accuracies.  This may be a result of combining 
the analysis of spectra with illumination effects in the VNIR/SWIR and no illumination effects in the TIR.  
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Figure 3. Laboratory reflectance spectra and emissivity spectra of minerals and rocks resampled to 
AVIRIS (top) and MASTER (bottom) wavelength bands.  AVIRIS water absorption bands excluded from 
the analysis are indicated by the breaks in the spectral curves. 

 
By comparison, maximum likelihood classification achieved the best performance on all data 

sets.  Factors in the simulated data analysis that favor the maximum likelihood classification is the large 
and representative training sample of approximately 10,000 pixels, and that uncertainty in the data sets 
were modeled with normal distributions.  In real applications, it can be difficult to select training data that 
completely characterize the classes of interest, and variability does not necessarily follow a normal 
distribution.   

When the minerals and rocks with no distinct absorption features in the VNIR, SWIR, and TIR 
regions are excluded from the analysis, leaving just 9 minerals, the average results of the classifications 
(Figure 4) are similar in trend to the average results found with all 16 minerals and rocks (Figure 1), 
although in detail there are some important differences.  Excluding the classes with relatively flat spectral 



 

curves, including basalt, raised the accuracy of most methods, especially SFF. In fact, SFF achieved the 
second highest position in overall accuracy applying to the simulated AVIRIS data for the 9 minerals for 
the moderate to high uncertainty data sets (Figure 4, upper left).  Although most of the selected minerals 
showed absorption features in the TIR region, SFF resulted in the worst accuracy for the simulated 
MASTER data (Figure 4, upper right).  This poor result suggests that SFF is not good for classifying 
multispectral data with a relative broad bandwidth, like MASTER.  The results of the combined data sets 
(Figure 4, bottom) showed that combining AVRIS and MASTER bands made a small but notable 
improvement for discriminating minerals using SAM in the moderate level uncertainty data sets.  Quartz, 
goethite, and hematite, which have distinctive absorption features in the TIR region, showed a marked 
increase in classification accuracy for data set 3 and 4.   
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Figure 4. Comparison of the overall accuracies using five mapping methods on different noise level data 
sets of 9 mineral and rock classes with distinctive absorption features.  Upper left: AVIRIS data sets. 
Upper right: MASTER data set. Bottom: Combined data set. 



 

4. Summary and conclusions 
A series of simulated data sets based on the characteristics of AVIRIS and MASTER sensors was 

created.  The simulated data sets include surface reflectance and emissivity derived from library spectra of 
16 common minerals and rocks occurring in Cuprite, Nevada.  Five automatic classification algorithms, 
minimum distance, maximum likelihood classification, binary encoding, SAM, and SFF, were applied to 
all data sets. The classification results showed that combining AVIRIS with MASTER data sets can be 
useful for improving the accuracy of identifying the 16 selected minerals and rocks in some 
circumstances.  First, most methods applied to the combined data sets, except SFF, achieved varying 
improvement in overall accuracy in comparison to these methods used with the AVIRIS data set alone.  
Second, some minerals and rocks showed a great improvement in their individual classification 
accuracies.  Basalt, calcite, and muscovite, for instance, resulted in an improvement of at least 20 percent 
or greater in either the producer’s or the user’s accuracy using the combined data sets with SAM, and 
using the combined data set with SFF resulted in a large improvement in accuracy for goethite, hematite, 
quartz, and muscovite.  Because SFF is an absorption feature based method, the combination of AVIRIS 
with MASTER with SFF only enhances discrimination of minerals and rocks exhibiting distinctive 
absorption features in the TIR region.  Within the 16 minerals and rocks, only 4 minerals, goethite, 
hematite, quartz, and muscovite, have strong distinctive absorption features in TIR region. Adding 
uncertainty to MASTER tends to dilute absorption features.  Therefore, for most minerals and rocks, 
combining MASTER TIR with AVIRIS bands degrades the performance of SFF.  

Almost all methods used in this study are sensitive to mixing uncertainty.  The only exception is 
maximum likelihood classification.  SFF applied to the data set consisting of minerals exhibiting 
distinctive absorption features was found to be relative tolerant to mixing uncertainty.  SAM, binary 
encoding, and SFF are less sensitive to illumination effects when they are applied to the simulated 
AVIRIS data sets.  However, once illumination effects are applied to the simulated AVIRIS data in the 
combined data sets, there is a dramatic decrease of overall accuracy.  This suggests that specific 
algorithms may need to be developed to integrate data with reflected and emissive characteristics, rather 
than simply applying previously developed methods to the combined data sets.  Maximum likelihood 
classification is relatively robust in the presence of uncertainties, at least if sufficient training samples can 
be identified to estimate the probability distribution accurately.  Generally however, it may not be 
possible to find a sufficient number of training pixels for the high dimensionality of AVIRIS data.  
Therefore, it may be necessary to perform feature extraction, for example with the MNF transformation, 
on the simulated AVIRIS and combined data sets before maximum likelihood classification is applied.  
The accuracy of minimum distance classification and SAM on MNF transformed data sets is almost 100 
percent, indicating that the performance of MNF is very successful in suppressing the noise, and reducing 
the number of bands, at least for these simulated data. 

In terms of overall accuracy of classification, maximum likelihood classification showed the best 
performance.  However, prior knowledge about the study area is required in order to select training 
samples.  Hyperspectral analysis methods like SFF have an advantage over maximum likelihood 
classification in that, at least potentially, external library spectra can replace in-scene training data.  The 
simulated AVIRIS data showed that SFF is generally superior to SAM, although the accuracy of SAM 
applied to combined data sets is slightly better than that of SFF.  SAM applied to the combined data sets 
increased classification accuracy for some minerals and rocks which do not exhibit distinct absorption 
feature in thermal infrared region, while for SFF, only the accuracy of minerals and rocks with 
characteristic absorption features in thermal infrared region was improved.  Although binary encoding 
and minimum distance classification showed a relative poor performance on the simulated AVIRIS and 
combined data sets, binary encoding has some advantages, including a relatively simple algorithm, it is 
very fast, and is insensitive to illumination variation.  Minimum distance classification is also relatively 
fast, only needs a small number of training samples, and achieves very high accuracy when it is applied to 
multispectral data sets.  SFF is not good for multispectral data, whereas SAM can achieve relatively good 
performance with either hyperspectral or multispectral data.  
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